Reanalysis of an explosion

Jacques Ruer
Jean-Paul Biberian

sfsnmc
Agenda

• Explosion of a calorimeter in 2004
• Examination of the reactor pieces: Explosion in the gas phase
• Review of the explosion mechanisms
• Explosion tests
• Possible scenario of the explosion of the calorimeter
• Review of the other similar events
• Recommendation for the safety of future experiments
Agenda

• Explosion of a calorimeter in 2004
• Examination of the reactor pieces: Explosion in the gas phase
• Review of the explosion mechanisms
• Explosion tests
• Possible scenario of the explosion of the calorimeter
• Review of the other similar events
• Recommendation for the safety of future experiments
Calorimeter

Experience of calorimetry during electrolysis of D$_2$O with a Pd cathode by J.P. Biberian in 2004

Figure 1. Schematic of the electrolytic cell.
Calorimeter

Cell identical to the original one
The double walls are silver coated

Original electrodes placed inside a similar cell (No silver coating)
Calorimeter

Photographs of the fragments after the explosion
Calorimeter

• Strong explosion after 700h
• Origin of explosion not identified at that time
 – Tests with H₂-O₂ mix in a similar cell gave weak explosions
 – Explosion due to LENR?
• Reanalysis
 – Electrodes unaffected: Explosion in the gas phase
 – Hypothesis: Occurrence of a gas detonation?
Agenda

• Explosion of a calorimeter in 2004
• Examination of the reactor pieces: Explosion in the gas phase
• Review of the explosion mechanisms
• Explosion tests
• Possible scenario of the explosion of the calorimeter
• Review of the other similar events
• Recommendation for the safety of future experiments
Examination of cell pieces

Only the large pieces have been recovered after the explosion

Pieces from the outer tube

Pieces from the inner tube
Examination of cell pieces

The bottom parts of the inner and the outer tube were not broken in small pieces. The inner tube punched the outer one that was resting on the table. It is possible to reconstruct the outer bottom with the pieces recovered. Apparently, the bottom was protected from the blast, probably by the presence of the liquid electrolyte.
Examination of the electrodes

The electrodes seem unaffected by the explosion, nor is the condenser.

1 of the 4 glass holder rods is broken.
Preliminary conclusions

• The electrodes look unaffected: The explosion occurred in the gas phase
• The glass cell is broken in small pieces, but the bottoms of the inner and the outer tubes are relatively unaffected: A liquid level of approx. 60mm protected the lower section from the explosion blast
• Gas mix in the headspace: 83 cm3
Hypothesis

• Before concluding to a nuclear type of reaction, a working hypothesis is to examine the possibility of a chemical origin of the explosion
Agenda

• Explosion of a calorimeter in 2004
• Examination of the reactor pieces: Explosion in the gas phase
• Review of the explosion mechanisms
• Explosion tests
• Possible scenario of the explosion of the calorimeter
• Review of the other similar events
• Recommendation for the safety of future experiments
What is an explosion?

• Sudden, violent release of chemical energy

• Understanding of the problem requires a review of the phenomena
H₂ – O₂ reaction

• H₂ + 0.5O₂ -----> H₂O + 286 kJ/mol
• Tube content : 83 cm³ --> 710 J chemical energy
• Combustion of the stoichiometric mix: flame velocity = 11 m.s⁻¹

DEFLAGRATION AND DETONATION POSSIBLE
Deflagration and Detonation

• **Deflagration**: Subsonic flame velocity, modest pressure rise

• **Detonation**: Supersonic flame velocity, high pressure peaks

• Detonation can be produced by:
 – Deflagration to Detonation Transition (**DDT**)
 – Large ignition energy: Shock Detonation Transition (**SDT**)
 – Shock Wave Amplification by Coherent Energy Release (**SWACER**)
DDT 1/6 : Weak ignition

Stoichiometric \(\text{H}_2 + 0.5 \text{O}_2 \)

Energy required for flame ignition: 3 \(\mu \text{J} \)
Easily obtained by a spark, a hot wire - \(T > 833 \text{K} \) (560°C)
• The flame pushes the unburned gas mix
• Little pressure buildup

Stoichiometric $\text{H}_2 + 0.5 \text{O}_2$:
Flame velocity = 11 m.s$^{-1}$
Flame thickness: 0.32mm
Induction time: 30 μs
The turbulence increases the area of the flame reaction surface. The heat release rate increases in the tube section where the reaction proceeds. The preheating of the unburned gas is enhanced. The induction time in the flame decreases. The flame speed increases progressively to supersonic velocity. The unburned gas is pushed more and more rapidly. The pressure ahead of the flame builds up.
Once the flame velocity becomes supersonic, a shock wave is formed. The shock increases the gas temperature before the reaction, hence the reaction rate.

At some point, the reaction rate is sufficient to generate a fast moving wave: this is the Deflagration Detonation Transition (DDT).
Detonation is described by the theories of Chapman-Jouguet (CJ) and Zeldovitch- von Neuman-Döring (ZND)
The detonation front has a cellular structure (λ)

Stoichiometric $H_2 + 0.5 \, O_2$:
- Cell size $\lambda = 1.4\,\text{mm}$
- Detonation velocity: $2900 \, \text{m.s}^{-1}$ (Mach 5.05)
- Flame thickness: $50 \, \mu\text{m}$
- Induction time: $17 \, \text{ns}$
- $T_{CJ} = 3400\,\text{K}$
- $T_{ZND} \approx T_{CJ}/2$
- $P_{CJ} = 18 \, \text{bars}$ - $P_{ZND} \approx 41 \, \text{bars}$
Between the local onset of detonation and the full development of the detonating front, the wave travels faster than \(2900 \text{ m.s}^{-1}\) and the pressure is higher than \(P_{ZND}\).

Many shock waves travel in the volume, interact with each other, are reflected by the walls – Very complicated phenomena.

Reflected waves may exceed 80 bars.
SDT : Shock Detonation Transition

- Detonation is initiated directly if the ignition energy is sufficient (powerful spark, exploded wire, explosive, projectile)
- Stoichiometric $\text{H}_2 + 0.5 \text{O}_2$: 6J
SWACER (1 / 3)

- Influence of a gradient of induction time in the unburned gas
- **For example:**
- A jet of burned gas injects a cloud of hot gas in the headspace.
- The temperature gradient induces a gradient of induction time
- In addition, there is a gradient of the local sound speed

\[v_{sound} = \sqrt{\frac{\gamma RT}{M}} \]
SWACER (2 / 3)

- A hot spot triggers the combustion,
- The gas layer adjacent to the hot spot has the lowest induction time and reacts first
- The next layer with a slightly longer induction time reacts next
- The wave propagates rapidly, layer after layer and gains in force
• As the wave proceeds, it travels in cooler unburned gas where the sound speed is lower. The Mach number increases and the pressure front steepens (shock wave).
• The Shock Wave is Amplified by Coherent Energy Release (SWACER).
• The shock wave may trigger the detonation.
SWACER ignition by a weak source

- Combustion in small tubes: Deflagration strength increases over a short distance

Fig. 15 – Evolution of temperature (dashed lines) and pressure (solid lines) profiles on the flame tip; $D = 0.5\text{ mm}$,
SWACER can be ignited by a weak source

- Deflagration in a tube if $\frac{d}{\lambda} \geq 1$

- Deflagration between parallel plates, e.g. a folded sheet ($e > 0.26\text{mm for } H_2 - O_2$)

The hot jet creates the temperature gradient required for a SWACER
Agenda

• Explosion of a calorimeter in 2004
• Examination of the reactor pieces: Explosion in the gas phase
• Review of the explosion mechanisms
• Explosion tests
• Possible scenario of the explosion of the calorimeter
• Review of the other similar events
• Recommendation for the safety of future experiments
Experimentation

- Tests with stoichiometric H$_2$ + 0.5 O$_2$
- Tubes Pyrex 25mm outer diameter
- Ignition systems tested:
 - HV spark
 - Hot wire 200 µm constantan
 - Exploded Cu wire 70 µm
 - 1.3mm dia. tube connected to a prechamber
- 28 shots in total
Deflagration – Hot wire

Low flame velocity
Glass tube not broken

Plastic tube dia 4mm
anode
silicone plug
cathode
wire (constantan or copper)

Ignition current

Flame
Plug ejected
Hot wire
Strong deflagration – HV spark

High flame velocity
Glass tube not broken
Ignition by a small tube

Reaction in a pre-chamber connected to the glass tube by a long small diameter copper tube

Gas generator $\text{H}_2 + 0.5\text{O}_2$

HV spark igniter

Pre-chamber dia 21 mm length 160 mm

Gas Line Isolator

Gas outlet

Steel cover with weight

Glass tube External dia.: 25mm Wall: 1mm

Gas inlet and ignition conductor

PVC protection tube

Free height

PU foam shock absorber

PVC support

Copper tube internal dia.: 1.3 mm External dia.: 3.6 mm

Water bath
Ignition by a small tube

Reaction in a pre-chamber connected to the glass tube by a long small diameter copper tube

Pre-chamber
Spark ignition
Int. Dia.: 21mm
Length : 150mm

Cu tube
Int. Dia.: 1.3mm
Length : 500mm

Glass tube
Int. Dia.: 23mm
Length : 200mm

PVC protection tube
Example of deflagration: Tube not broken

Ignition
Flame visible in the glass tube, the gas feeding tube, the gas outlet

30 ms later
The glass tube is thrown onto the cover, but is not broken
Example of detonation: tube pulverized

Examples of glass tube debris settled on the base after removal of the protection PVC tube and the water bath

The glass is pulverized, except the zone located below the water level (where the glass is shattered into large pieces)
Tests with small tube opening at different heights

The glass is pulverized or not, depending on the position of the small tube opening along the axis.

- 30 mm - Tube intact
- 60 mm - Tube pulverized
- 90 mm - Tube pulverized
- 110 mm - Tube mouth broken
- 140 mm - Tube intact
Lessons from litterature and experiments

• The stoichiometric mix $\text{H}_2 + 0.5 \text{ O}_2$ reacts easily
• The energy to initiate a combustion is small (3μJ)
• The quantity of gas contained in the reactor is sufficient to develop a violent explosion (710J)
• The glass is broken only if a strong detonation occurs
• The strong detonation can be triggered by a SWACER mechanism
• A small diameter tube or a folded sheet can induce a SWACER
Agenda

• Explosion of a calorimeter in 2004
• Examination of the reactor pieces: Explosion in the gas phase
• Review of the explosion mechanisms
• Explosion tests
• Possible scenario of the explosion of the calorimeter
• Review of the other similar events
• Recommendation for the safety of future experiments
Review of the 2004 experience

- Total duration: 700 h
- No addition of heavy water
- Electrolysis current was varied during the experience
- The current was interrupted during 4 days
- Explosion occurred after resuming the electrolysis
Current record

Start
Sept. 24, 2004 13:25

Current interrupted during 119 hours

End
Oct. 25, 2004 13:01

Explosion
Oct. 23, 2004 17:57

31 days
Possible scenario of the explosion (1/4)

Initial electrolysis
The liquid level drops progressively

Current interruption
The Pd tube is deloaded

Electrolysis is resumed
The headspace and the Pd tube are filled by the D₂+O₂ gas mix
1 - Once the Pd wall is reloaded with deuterium, free radicals appear on the tube inner surface. A hot spot lights up a flame at the bottom of the Pd tube.
Possible scenario of the explosion (3/4)

1 - Once the Pd wall is reloaded with deuterium, free radicals appear on the tube inner surface. A hot spot lights up a flame at the bottom of the Pd tube

2 – A deflagration occurs in the tube
Possible scenario of the explosion (4/4)

1 - Once the Pd wall is reloaded with deuterium, free radicals appear on the tube inner surface. A hot spot lights up a flame at the bottom of the Pd tube.

2 – A deflagration occurs in the tube.

3 – The hot jet triggers the detonation in the headspace (SWACER).
Conclusion of the reanalysis

• The explosion of the calorimeter may be due to a detonation of the gas contained in the reactor
• A SWACER mechanism may have triggered the strong detonation
• No nuclear mechanism is required
• However, the reason of the hot spot remains unclear (H radicals on the inner Pd tube surface ?)
Agenda

• Explosion of a calorimeter in 2004
• Examination of the reactor pieces: Explosion in the gas phase
• Review of the explosion mechanisms
• Explosion tests
• Possible scenario of the explosion of the calorimeter
• Review of the other similar events
• Recommendation for the safety of future experiments
Other similar events: Explosions reported by Zhang – April 1991

- 186mm high vessel containing 39 cm³ electrolyte D₂O (94mm liquid height)
- Pd tube cathode 1.67mm ext. dia. 80mm long
- Vessel plugged
- Low current density
- 3 explosions occurred
- The Pd tube top was probably emerged
- SWACER may be responsible (similar Biberian)
Other similar events: Accident at SRI
January 02, 1992

- Cell: 4” dia. X 6” height designed for high pressure
- Steel wall 1/2” thick
- 1cm³ Pd plate-shaped cathode
- The cell exploded after the disconnection, while it was removed from the water bath
- Because of leaks, the pressure was close to ambient
- A potential explanation may be the formation of a concentration gradient, resulting in a SWACER?
- Andrew Riley died in the accident
Other similar events: Explosion of a Mizuno reactor on January 24, 2005

- 1000 cm3 vessel containing 700 cm3 electrolyte
- Tight cover
- Tungsten wire cathode 1.5mm dia. 29cm long separated from the anode mesh by a quartz funnel
- Explosion occurred « soon after electrolysis began » - The quantity of H$_2$ is said to be small

- H$_2$ - O$_2$ left from an earlier plasma electrolysis?
- “it is possible that the tungsten cathode may have been exposed to the gas in the headspace.” (accident report)
- “Bright white flash on the lower portion of the cathode. Light expanded and at the same time the cell exploded” (accident report)
- SWACER ? (if enough H$_2$ present)
Agenda

• Explosion of a calorimeter in 2004
• Examination of the reactor pieces: Explosion in the gas phase
• Review of the explosion mechanisms
• Explosion tests
• Possible scenario of the explosion of the calorimeter
• Review of the other similar events
• Recommendation for the safety of future experiments
Safety recommendations for electrolytic systems

1. Install the equipment with appropriate safety protection to minimize the consequences of a potential explosion

2. Do not confine the H₂ + O₂ gas in the reactor

3. If you need to do so (e.g. with a recombiner) make sure that pieces of catalytic metals (Pd, Pt, Ni, etc.) are never exposed to the gas phase, and remain submersed in the liquid

4. If pieces of such metals must be in the gas, make sure there is no hollow structure (tube, folded foil, etc.)
Thank you for your attention

Please remember to make your best efforts to avoid accidents