Anomalous Heat Generation Experiments Using Metal Nanocomposites and Hydrogen Isotope Gas

Yasuhiro Iwamura1, Takehiko Itoh1,7, Jirohta Kasagi1, Akira Kitamura2,5, Akito Takahashi2, Koh Takahashi2, Reiko Seto2, Takeshi Hatano2, Tatsumi Hioki3, Tomoyoshi Motohiro3, Masanori Nakamura4, Masanobu Uchimura4, Hidekazu Takahashi4, Shunsuke Sumitomo4, Yuichi Furuyama5, Masahiro Kishida6, Hideki Matsune6

1 Research Center for Electron Photon Science, Tohoku University, 982-0826 Japan
2 Technova Inc., 100-0011 Japan,
3 Green Mobility Research Institute, Institutes of Innovation for Future Society, Nagoya University, 464-8603 Japan,
4 Research Division, Nissan Motor Co., Ltd., 237-8523 Japan,
5 Graduate School of Maritime Sciences, Kobe University, 658-0022 Japan,
6 Graduate School of Engineering, Kyushu University, 819-0395 Japan
7CLEAN PLANET Inc., 105-0022 Japan

12th International Workshop on Anomalies in Hydrogen Loaded Metals
Hotel Langhe e Monferrato, Via Contessa di Castiglione, 14055 Costigliole d'Asti (AT), Italy. 5-9 June 2017
Contents

1. Background

2. Experimental

3. Experimental Results at Tohoku Univ.
 (PNZ4s, CNZ5s, PSn1, CNS3s, CNZ6s)

4. Concluding Remarks
1. Background
Collaborative Research Project (2015.10-2017.10)

Objectives

To clarify the existence of the anomalous heat generation phenomenon.

Setup of a new national project by obtaining guiding principles on how to control the anomalous heat generation phenomenon.

Organization

Collaborative Research Project

- Technova Inc.
- Nissan Motor Co., Ltd.
- Kyushu University
- Tohoku University

Nagoya University

Kobe University
Summary of Experimental Results at Tohoku Univ.

<table>
<thead>
<tr>
<th>samples</th>
<th>Gas</th>
<th>Temp.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNZ4s</td>
<td>D</td>
<td>160-300°C</td>
<td>1) Excess Heat 4-5W, Integrated $H > 15eV/D$ (1.4MJ/mol-D)</td>
</tr>
<tr>
<td>(PdNi<sub>7</sub>/ZrO<sub>2</sub>)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNZ5s</td>
<td>H</td>
<td>160-250°C</td>
<td>1) Excess Heat 2-5W, Integrated $H > 68eV/H$ (6.5MJ/mol-H)</td>
</tr>
<tr>
<td>(CuNi<sub>7</sub>/ZrO<sub>2</sub>)</td>
<td></td>
<td></td>
<td>2) Coincident increase events of the pressure of the reaction chamber and gas temperature</td>
</tr>
<tr>
<td>PSn1</td>
<td>D</td>
<td>200-300°C</td>
<td>No Excess Heat at elevated temp.</td>
</tr>
<tr>
<td>(Pd/meso-Si)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNS3s</td>
<td>H(D)</td>
<td>150-300°C</td>
<td>1) In the case of H, Excess heat 2-4W, Integrated $H > 110eV/H$ (10.7MJ/mol-H)</td>
</tr>
<tr>
<td>(CuNi<sub>10</sub>/SiO<sub>2</sub>)</td>
<td></td>
<td></td>
<td>2) No excess Heat in the case of D</td>
</tr>
<tr>
<td>CNZ6s</td>
<td>H</td>
<td>150-350°C</td>
<td>Coincident increase events of the pressure of the reaction chamber and gas temperature were replicated</td>
</tr>
</tbody>
</table>
2. Experimental
Experimental Setup

Oil Flow-Calorimetry at High Temperature

A lot of Measurement Points

Resistant to Outer-Temperature Fluctuation
Appearance of Experimental Setup

Thermostatic chamber

Main experimental setup
Sample Preparation (ZrO_2)

- **Melt Spinning**
 - Amorphous Mixture of Metal Elements prepared by Melt Spinning method

- **Formation of Nano Particles by Oxidization**
 - 723K for 60 hr; Preferential oxidation of Zr to ZrO_2

- **Experiment at Kobe Univ.**
 - PNZ4

- **Experiment at Tohoku Univ.**
 - PNZ4s

Two samples subjected to the same process

- **Materials**
 - $\text{Pd}_{0.04}\text{Ni}_{0.31}\text{Zr}_{0.65}$ or $\text{Cu}_{0.04}\text{Ni}_{0.31}\text{Zr}_{0.65}$
Excess Power Evaluation

$$\eta Q = F_R \cdot \rho(T_{ave}) \cdot C(T_{ave}) \cdot (T_{out} - T_{in})$$

Flow rate Density Specific heat Delta T

$$Q = W_1 + W_2 + H_{EX}$$

Outer Heater Inner Heater Excess Heat

η (recovery rate) is estimated based on blank run data. Then, H_{EX} (Excess Heat) is calculated by the above equations.
Error Estimation

\[EXH = \frac{mC\Delta T}{\eta} - W\]

\[\delta(EXH) \approx |\delta(m)| \frac{C\Delta T}{\eta} + |\delta(\Delta T)| \frac{mC}{\eta} + |\delta(w)|\]

| Input [W] | \(\delta\) (W) | DeltaT [K] | \(\delta\) (DeltaT) | C[J/gK] | \(\rho\) [g/cm3] | FL[ml/min] | \(\delta\) (FL) | \(\eta\) | \(\frac{|\delta(m)| C\Delta T}{\eta}\) | \(\frac{|\delta(\Delta T)| mC}{\eta}\) | \(\delta\) (EXH) |
|-----------|----------------|------------|---------------------|--------|----------------|-----------|------------|------|----------------|----------------|------------|
| 79.61 | 0.031 | 128.05 | 0.261 | 1.817645 | 0.994537 | 14.28 | 0.012 | 0.692 | 0.067 | 0.162 | 0.260 |
| 134.01 | 0.076 | 191.5 | 0.390 | 1.92143 | 0.973475 | 14.4 | 0.04 | 0.641 | 0.372 | 0.273 | 0.721 |

In the case of CNZ5s, \(\sigma = 0.3W\) for 80W Input, \(\sigma = 0.75W\) for 134W Input.
If we take \(3\sigma\) for error range, we get 0.9W for 80W and 2.3W for 134W.
3-1 PNZ4s (Pd$_{0.04}$Ni$_{0.31}$Zr$_{0.65}$) with D$_2$ Gas
Heat Release at Room Temp.

\[E = \int P \, dt \, = \, 24.22 \times 3600 \, = \, 87.2\,[kJ] \]

PNZ4S; Tohoku

Absorbed D: 1.59 mol

54.8 kJ/D-mol

0.57 [eV/D]

PNZ4; Kobe

54 kJ/D-mol

0.56 [eV/D]

agree
Excess Heat Generation: PNZ4s with D$_2$

Integrated EXH: 2.47 MJ

Absorbed D: 1.73 mol

At Least 1,430 kJ/D-mol

14.9 eV/D

Cannot Explain by Chemical Reactions
3-2 CNZ5s (Cu$_{0.04}$Ni$_{0.31}$Zr$_{0.65}$) with H$_2$ Gas
Overview of CNZ5s Experiment

Temperatures monitored by RTDs and E1

Blank Baking CNZ5s Experiment
Comparison between RTDs and E1

Temperatures of E1 and RTD4 are higher than those of Blank Run.
Fluctuations of Pressure of Reaction Chamber (Pr) and E2 Gas Temp. (E2) during CNZ5s Experiment
Coincident Increase of Pressure of Reaction Chamber (Pr) and E2 Gas Temp. (E2)
Coincident Increase of Pr and E2: Zooming Generation of High Temperature Gas?
Excess Heat Generation; CNZ5S with H$_2$

Error factors
① Fluctuation of Oil Flow
② Fluctuation of Temperature measurement
③ Fluctuation of power input

Int. Released Energy: 1.8MJ
Absorbed Hydrogen: 0.29mol

Released Energy per H: 6.5 MJ/mol-H
: 67.8eV/H

Not Explained by Known Chemical Reactions

- H absorption heat: 42kJ/mol-H (NiZr$_2$)
- H combustion heat: 121kJ/mol-H

Reaction between Fe$_2$O$_3$ and Ni with H$_2$: 137kJ/mol-H

All NiO and Zr reaction: 121kJ
Broken ZrO2 beads after excess heat release

The sample was sieved out to separate from ZrO2 beads (1mmϕ). But we found that some broken parts of ZrO2 beads were mixed with the metal nano-composite sample.

Suggests that very large local heat stress was loaded on ZrO2 beads.
3-3 \textbf{PSn1;Pd/TMPS-4R} with \textbf{D}_2 \textbf{Gas}
Nano-Pd embedded in Mesoporous Silica with 4nm hole prepared by Nagoya Univ. (PSn1;Pd/TMPS-4R)

PSn1; 112.4 g
-No filler-
Pd; 7.52 g
PdO; 8.65 g

http://www.taiyointernational.com/products/mesoporous-silica/)
No excess heat observation in the case of Pd only samples.
3-4 CNS3s; with H₂/D₂ Gas
It seems that higher temperature in the reaction chamber is an important factor for anomalous heat generation.

When we changed H$_2$ to D$_2$ gas, we observe no excess heat.

Generated Energy

10.7 MJ/mol-H
110 eV/H
3-5 CNZ6s; with H$_2$Gas
Coincident increase events of E2 and Pr Burst-like Coincident increase events similar to CNZ5s were observed.
Replication of Coincidence Events at (1)

Coincident increase events of the pressure of reaction chamber and gas temperature were replicated.

$W_1, W_2 = (134, 0)$
Concluding Remarks

- **Anomalous excess heat generations** were observed for all the samples at elevated temperature (150°C-350°C), except for the Pd nanoparticles embedded in mesoporous SiO₂.

- Integrated excess heat reached more than several MJ/mol-H(D) which could NOT be explained by any known chemical process.

- **Coincident burst-like increase events** of the pressure of reaction chamber and gas temperature, which suggested sudden energy releases in the reaction chamber, were observed many times for an experiment using the $\text{Cu}_{0.044}\text{Ni}_{0.31}\text{Zr}_{0.65}$ (CNZ5s) sample. These burst-like events were replicated during the experiment using the same composition sample; $\text{Cu}_{0.044}\text{Ni}_{0.31}\text{Zr}_{0.65}$ (CNZ6s).

- **Qualitative reproducibility between Kobe and Tohoku experiments** was good.
Acknowledgement

Mr. H. Yoshino; CLEAN PLANET Inc.
Mr. M. Hattori; CLEAN PLANET Inc.
Mr. S. Hirano; CLEAN PLANET Inc.
Mr. Y. Shibasaki; ELPH Tohoku University